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1. Introduction

High-strength low-alloy (HSLA) steels are a type of low-carbon 
steel that exhibits combination of high strength, excellent 
toughness, weldability, and good corrosion resistance.1,2 Recently, 
to reduce energy consumption and CO2 emissions, there has been 
an increasing demand for lightweight vehicles and, therefore HSLA 
steels are preferred in the automotive industry for the reduction of 
vehicle weight.3 Also, these alloys have been applied to oil and gas 
transportation, navy vessels, and even nuclear fission power plant 
components due to their excellent mechanical properties.2 

To obtain the desired microstructure and mechanical properties Ti, 
V, Nb, and Mo elements are usually added in small amount for the 
production of high-strength steels. These elements can improve the 
strength of steels by grain refining, solid solution, dislocation and 
precipitation hardening mechanisms.4-7 Vanadium is commonly 
preferred to other micro alloying elements additions because of 
the lower hot working temperatures and rolling forces. Owing to 
the relatively large solubility of vanadium carbonitride V (C, N), 
in Ti-V microalloyed steels, it is easier to control precipitation 
hardening, mainly in the austenite phase at convenient heating 
temperature.5 Also, titanium has frequently been added to HSLA 
steels to enhance the control of austenite grain size during welding 
or reheating process. Multi-microalloying can, thus, lead to 
the formation of complex inter metallic precipitates, which can 
influence the mechanical properties of the HSLA steels.8

The precipitation of the carbonitrides is an important phenomenon 
influencing the microstructure of HSLA steels and the Subsequent 
mechanical properties.9 These carbonitrides influence the 

evaluation of the austenite grain size during thermomechanical 
processing, which in turn influence the final microstructure. Hence 
several studies have been done on precipitation and austenite grain 
size during hot processing of these steels. The influence of niobium 
on austenite grain size was studied by K. A. Annan et al.10 the results 
showed that there is a linear relationship between Nb content and 
the activation energy for grain growth. Beata Białobrzeska et al.11 
showed that the austenite grain size has a strong influence on the 
mechanical properties of the steel. 

Under this background, it is necessary to study austenite grain size 
and precipitation behaviour to design a suitable thermomechanical 
treatment for the achievement of desired properties at room 
temperature. This research investigates the effect of austenitization 
temperature and soaking time on precipitation behaviour and 
austenite grain size in Ti-V steels.

2. Experimental 

The chemical composition of investigated steels are given in Table 
1. The steels were machined into 10 mm × 15 mm (diameter × 
length) cylindrical specimens. These specimens were austenitised 
at 1150 and 1280◦C and soaked for 1, 2 and 3 hrs, and then 
quenched in brine with 10% NaCl.  

The quenched specimens were halved along the longitudinal axis 
and one half was tempered at 490 °C for 72 hrs to improve the 
response of prior austenite grain boundaries etching. The tempered 
samples were mounted, ground, polished and then etched with 
FeCl3 solution containing 5g iron chloride, 100 ml distilled water 
and 5 drops of hydrochloric acid. Etching was carried out at room 
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temperature for times ranging from 10 to 30 minutes. The samples 
were observed under an Olympus BX51MTM optical microscope 
to reveal the prior austenite grain boundaries. The austenite grain 
size was measured using the average linear intercept method. 

A JSM-IT300 JEOL scanning electron microscopy (SEM) equipped 
with energy dispersive spectroscopy (EDS) was employed to 

determine the precipitate’s composition and morphology. Thermo-
Calc software was used to predict the precipitation behaviour. 

3. Results and discussion 

The volume fraction of precipitates and solubility of alloy element 
as function of temperature are shown in Figures 1 and 2. The 

Table 1: chemical composition of the experimental steel (mass. %)

Alloy C Mn Ti Si N S Al Cr V P Fe
Alloy 1 0.112 1.67 0.082 0.43 0.0054 0.014 0.006 0.659 0.12 0.008 balance
Alloy 2 0.115 1.48 0.081 0.416 0.0043 0.006 0.01 0.631 0.06 0.008 balance
Alloy 3 0.108 1.52 0.099 0.43 0.0043 0.006 0.015 0.613 --- --- balance

only alloy 1 would form substantial amount of MnS particles due to the higher amount of S. 84 

It was also the alloy that was predicted to have the least amount of Ti in solution, Figure 2. 85 

Fig. 1 – Thermo-Calc predictions of precipitates formation (a) alloy 1 (b) alloy 2 (c) alloy 3 86 

 

 

 

(a) 

(b) 

(c) 

Figure 1: Thermo-Calc predictions of precipitates formation (a) alloy 1 (b) alloy 2 (c) alloy 3
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Thermo-Calc predictions show that VC and MnS completely 
dissolve at a reheating temperature around 850 and 1100 °C 
respectively, but Ti (C, N) particles are stable at this temperature 
and also Ti4C2S2 begin to form at temperature higher than 1100 °C 
during the austenitization process. In other words, TiN precipitates 
normally form in the melt prior to solidification.12 These particles 
are thermodynamically stable in austenite and ferrite and, therefore, 
would not dissolve during soaking or hot rolling furthermore. The 
Thermo-Calc predictions also revealed that, unlike the rest of 
the steels, only alloy 1 would form substantial amount of MnS 
particles due to the higher amount of S. It was also the alloy that 
was predicted to have the least amount of Ti in solution, Figure 2.

Figure 3 reveals the morphology of the Ti (C, N) and Al2O3 
particles, whereby the latter acted as a preferential nucleation site. 
In other words, a cleaner steel would promote the Ti to remain in 
solution during solidification process as desired. In addition, MgO/
MgS and MnS also expedited the heterogeneous nucleation of the 
Ti (C, N) because the required undercooling energy is much lower 
than that for the homogeneous nucleation.13

Figures 4 and 5 show the morphology, distribution and composition 
of precipitates of as-quenched alloy 1 after austenitization at 1150 
and 1280 °C respectively.

As may be seen from Figure 4, there were 5 different types of 
precipitates at 1150 °C reheating temperature. Type 1 precipitates 
were cuboidal titanium carbonitrides (Ti (C, N)). Type 2 precipitates 
were the medium size manganese-titanium carbosulfides ((Mn-
Ti) (C, S)). Type 3 precipitates were the manganesesulfides 
(MnS). Type 4 and 5 precipitates were the fine spherical titanium 
carbosulfide (Ti4 C2S2) and titanium carbide (TiC) respectively.

The only particles that dissolved at 1280 °C were the TiC while the 
rest remained, Figure 5, and this was agreement with the Thermo-
Calc prediction. 

Figures 6 and 7 show the optical micrograph of the prior austenite 
grain for the three investigated alloys after austenitization at 
1150 and 1280 °C for 2 hr. The austenite grain size distribution 
at 1150 and 1280 °C for various soaking time is shown in Figures 

 

 

 
Fig. 2 – Solubility of alloy elements in austenite phase (a) alloy 1 (b) alloy 2 (c) alloy 3 87 
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Figure 2: Solubility of alloy elements in austenite phase (a) alloy 
1 (b) alloy 2 (c) alloy 3

remain in solution during solidification process as desired. In addition, MgO/MgS and MnS 90 

also expedited the heterogeneous nucleation of the Ti (C, N) because the required 91 

undercooling energy is much lower than that for the homogeneous nucleation [13]. 92 

Figures 4 and 5 show the morphology, distribution and composition of precipitates of as-93 

quenched alloy 1 after austenitization at 1150 and 1280 °C respectively. 94 
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precipitates were the manganesesulfides (MnS). Type 4 and 5 precipitates were the fine 98 
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The only particles that dissolved at 1280 °C were the TiC while the rest remained, Figure 5, 100 

and this was agreement with the Thermo-Calc prediction.  101 

 

 

  
 

 

Fig 3- Morphology of Ti (C, N) particles in alloy 3 at 1280 °C after 1 hr, a) SEM- BEI of Ti (N, C), and 102 

Al2O3, b) Ti (C, N), c) Al2O3 EDS spectra 103 
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Figure 3: Morphology of Ti (C, N) particles in alloy 3 at 1280 °C after 1 hr, a) SEM- BEI of Ti (N, C), and Al2O3, b) Ti (C, N), c) Al2O3 
EDS spectra
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8 and 9 respectively. It can be seen that the austenite grain size 
coarsened with increasing reheating temperature and soaking 
time. The variation of the austenite grain size with soaking time is 
summarized in Figures 10 and 11. It is evident that the finer grain 
size was observed in the steel containing the highest content of 
V and S of 0.12 and 0.014 mass.% respectively. Therefore, the 
fine spherical titanium carbosulfide (Ti4C2S2) and titanium carbide 
(TiC) precipitates’ volume fraction was highest in alloy 1 and 
possibly responsible for the grain size refinement, that is, besides 
the VN particles that could not be observed by SEM. Therefore, 
it was not surprising that alloy 1 with the highest V and S content 
exhibited the finest grain size at both temperatures.

The basic relationship of the pinning force of grain boundaries as 
a function of the particle size and volume fraction is defined by 
Zener:10 

was not surprising that alloy 1 with the highest V and S content exhibited the finest grain size 116 

at both temperatures. 117 

The basic relationship of the pinning force of grain boundaries as a function of the particle 118 

size and volume fraction is defined by Zener [10]:  119 

𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃 = 3.𝛾𝛾𝛾𝛾.𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣
2𝑟𝑟𝑟𝑟

                           eq. 1 120 

Where ɣ is the austenite interface energy, VV is the particle volume fraction, r is average radius 121 

of particles. 122 

  

 
 Fig 6 - Micrograph showing prior austenite grains at 1150 °C and after 2 hr, a) alloy 1, b) alloy 2, and 123 

c) alloy 3 124 
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Where ɣ is the austenite interface energy, VV is the particle volume 
fraction, r is average radius of particles.

During austenitization, the precipitates can either dissolve or 
coarsen depending on the austenitization temperature.2 Therefore, 
it is not surprising that the rate of grain growth increases with the 
soaking temperature. Besides that, the grain growth is a diffusion 
controlled process and, therefore, its rate increases with an increase 
in temperature.  In this work, it was found that the fine TiC particles 
were the ones that dissolves as the temperature increases rendering 
the steel no inhibition to grain growth as the rest of the particles 
only coarsened.  

Figure 12 shows the variation of the Ti (C, N) with the isothermal 
holding time. While the particle size seemed to increase slightly 
with an isothermal holding time at 1150 °C. On the contrary, 
particle size decreased substantially with an isothermal holding 
time at 1280 °C. This suggests partial dissolution of the Ti (C, N) 

 

  

  

 
Fig. 4- SEM images and EDS spectra for alloy 1 at 1150°C and soaking time 1 hr 104 
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Figure 4: SEM images and EDS spectra for alloy 1 at 1150°C and soaking time 1 hr
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Fig. 5- SEM images and EDS spectra for alloy 1 at 1280°C and soaking time 1 hr. 105 
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Figure 5: SEM images and EDS spectra for alloy 1 at 1280°C and soaking time 1 hr
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 Figure 6: Micrograph showing prior austenite grains at 1150 °C and after 2 hr, a) alloy 1, b) alloy 2, and c) alloy 3
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Figure 7: Micrograph showing prior austenite grains at 1280 °C and after 2 hr, a) alloy 1, b) alloy 2, and c) alloy 3

was not surprising that alloy 1 with the highest V and S content exhibited the finest grain size 116 

at both temperatures. 117 

The basic relationship of the pinning force of grain boundaries as a function of the particle 118 

size and volume fraction is defined by Zener [10]:  119 
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                           eq. 1 120 

Where ɣ is the austenite interface energy, VV is the particle volume fraction, r is average radius 121 

of particles. 122 

  

 
 Fig 6 - Micrograph showing prior austenite grains at 1150 °C and after 2 hr, a) alloy 1, b) alloy 2, and 123 

c) alloy 3 124 

  

a b 

a 

c 

b 

10 µm 

 

10 µm 

 

10 µm 

 

20 µm 

 

20 µm 

 

 
Fig. 7- Micrograph showing prior austenite grains at 1280 °C and after 2 hr, a) alloy 1, b) alloy 2, and 125 

c) alloy 3 126 

   

   

   
Fig. 8- Distribution of prior austenite grain size at austenitization temperature 1150 °C, a) alloy 1 127 

after 1 hr, b) alloy1 after 2 hr, c) alloy 1 after 3 hr, d) alloy 2 after 1 hr, e) alloy 2 after 2 hr, f) alloy 2 128 

after 3 hr, g) alloy 3 after 1 hr, h) alloy 3 after 2 hr, and i) alloy 3 after 3 hr  129 
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Fig. 7- Micrograph showing prior austenite grains at 1280 °C and after 2 hr, a) alloy 1, b) alloy 2, and 125 
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Fig. 8- Distribution of prior austenite grain size at austenitization temperature 1150 °C, a) alloy 1 127 
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Figure 8: Distribution of prior austenite grain size at austenitization temperature 1150 °C, a) alloy 1 after 1 hr, b) alloy1 after 2 hr, c) alloy 
1 after 3 hr, d) alloy 2 after 1 hr, e) alloy 2 after 2 hr, f) alloy 2 after 3 hr, g) alloy 3 after 1 hr, h) alloy 3 after 2 hr, and i) alloy 3 after 3 hr 
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at 1280 °C as opposed to at 1150 °C. This agrees with the Thermo-
Calc prediction, Figure 1.  

Conclusions

The influence of the austenitization time and temperature on the 
precipitation behaviour and austenite grain growth in high Ti-V 
HSLA steels were investigated and the following conclusions can 
be made: 

• In the investigated steels of high Ti (0.1 mass. %) V (up to 0.12 
mass. %) steels, five types of precipitates were observed namely; 
Type 1 precipitates (Ti (C, N)), Type 2 precipitates ((Mn-Ti) (C, 
S)), Type 3 precipitates (MnS), Type 4 precipitates (Ti4C2S2) and 
Type V precipitates (TiC). 

   

   

   
Fig. 9- Distribution of prior austenite grain size at austenitization temperature 1280 °C, a) alloy 1 130 

after 1 hr, b) alloy1 after 2 hr, c) alloy 1 after 3 hr, d) alloy 2 after 1 hr, e) alloy 2 after 2 hr, f) alloy 2 131 

after 3 hr, g) alloy 3 after 1 hr, h) alloy 3 after 2 hr, and i) alloy 3 after 3 hr 132 
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Fig. 10- Variation of austenite grain size with holding time at reheating temperature of 1150 °C 134 
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Figure 9: Distribution of prior austenite grain size at austenitization temperature 1280 °C, a) alloy 1 after 1 hr, b) alloy1 after 2 hr, c) alloy 
1 after 3 hr, d) alloy 2 after 1 hr, e) alloy 2 after 2 hr, f) alloy 2 after 3 hr, g) alloy 3 after 1 hr, h) alloy 3 after 2 hr, and i) alloy 3 after 3 hr

Figure 11: Variation of austenite grain size with holding time at 
reheating temperature 1280 °C

   

   

   
Fig. 9- Distribution of prior austenite grain size at austenitization temperature 1280 °C, a) alloy 1 130 

after 1 hr, b) alloy1 after 2 hr, c) alloy 1 after 3 hr, d) alloy 2 after 1 hr, e) alloy 2 after 2 hr, f) alloy 2 131 

after 3 hr, g) alloy 3 after 1 hr, h) alloy 3 after 2 hr, and i) alloy 3 after 3 hr 132 
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Figure 10: Variation of austenite grain size with holding time at 
reheating temperature of 1150 °C
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Fig. 11- Variation of austenite grain size with holding time at reheating temperature 1280 °C 136 
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Fig. 12- Variation of Ti (C, N) size for alloy 1 at reheating temperatures of 1150 and 1280 °C  150 
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• The fine type 5 Precipitates (TiC) completely dissolve into 
austenite by increasing the reheating temperature to 1280 
°C. This led to substantial grain growth since the rest of the 
precipitates remained coarser. 

• The Al2O3 inclusions acted as preferential nucleation sites for 
the Ti (C, N) particles. This suggested that probably a cleaner 
steel would promote the Ti to remain in solution during the 
solidification process. In other words, this would promote 
precipitation of the finer TiC for grain refinement in this grade 
of steel. 
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