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Introduction

Titanium possesses the unfilled 3d2 shell that makes it available 
for physical and chemical properties from the low-lying electronic 
states and spin multiplicities [Du et al. 2010]. Several theoretical 
studies have been performed on the pure Ti clusters [Du et al. 2010, 
Castro et al. 2003, Wei et al. 2000]. Castro et al. (2003) used the 
generalized gradient approximation (GGA) to study the structures 
and spectroscopy of TiN and Ti-

N (N = 3−8, 13), the calculated 
density of states (DOS) and adiabatic binding energies for the 
ground state. It was found that the clusters possess highly compact 
structures, and Ti7 and Ti13 have distorted pentagonal bi-pyramid 
and icosahedra as magic isomers. Density functional theory with 
local spin density approximation (LSDA) was used by Wei et al. 
(2000) to study the TiN (N = 2−10) clusters and obtained the magic 
number at N = 7. Tomas et al. (2018) used density functional theory 
to investigate the thermodynamics accessible titanium, N = 2 – 32. 
They reported Ti7 and Ti13 as the magic clusters.    

The bimetallic clusters have been extensively investigated since the 
additive effect of the second metallic component in the bimetallic 
system due to their significant role in catalytic properties, surface 
segregations, etc., that emerges from the combination of nano-
systems with different transition metal species [Batista et al. 2018]. 
However, not much has been done for the Ti-bearing bimetallic 
clusters. Al-doped Ti clusters in the DFT framework have been 
studied by Xiang et al. (2004) and reported the Ti4Al cluster as 
the magic cluster. They also reported that the valent transition of 
the Al atom is associated with the structural transfer commenced 
with Ti10Al. Recently, small TM-doped Ti clusters (TM = V, Fe, 
Ni) have been investigated [Du et al. 2009] to gain insight into the 
geometrical structures, chemical bonds and magnetic properties of 
these doped clusters. Previous research reported that the doping of 

the Fe [Sun et al. 1996] and Ni [Deshpande et al. 2005] clusters 
with boron increases the binding energies, however, decreases 
the magnetic moments of clusters. In this study, we investigate 
the effect of Pt impurity when doped on the titanium clusters to 
probe into the geometrical and stability of the TiN−1Pt clusters. 
Additionally, the TiN clusters are also presented for comparison.

Computational methodology

Calculations in this work were carried out using the Knowledge-
Led Master Code (KLMC) software suite [Woodley (2013), 
Farrow et al. 2014] and its recently improved genetic algorithm 
(GA) module, [Lazauskas et al. 2017] which has proved to locate 
efficiently local (LM) and global (GM) minima on PES. The PES of 
TiN nanoclusters is evaluated using a many-body embedded atom 
method (EAM), which includes a combination of a many-body 
attractive term, Ea, and a repulsive two-body Born–Mayer IP, Er. 
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where B and A are empirical parameters; r0 is 
the equilibrium first neighbour distance in 
hcp solid; rij represents the distance between 
atoms i and j. After completing the search on 
the IP PES, we have selected for refinement 
a subset of the lowest energy LM within 
approximately 1.0 eV energy range above the 
corresponding tentative GM. The selected 
clusters were re-optimised at the quantum 
mechanical, DFT level using the all-electron, 
full potential electronic structure code FHI-
aims [Blum et al. 2009]. Additionally, FHI-
aims was further used to evaluate the effect 
of substituting one Ti atom with Pt impurity. 
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Results and discussion

Structure and characterization for TiN-1Pt.

The most energetic favoured isomers for TiN-1Pt clusters obtained 
by the FHI-aims technique are presented in figure 1. The N = 3 
cluster was an isosceles isomer that was observed to have Pt 
impurity capping on the Ti2 isomer. This position was observed to 
be mostly energetically favoured compared to others. At N = 4, 
the Pt atom was found to be more stable on the capped atom of 
the isosceles isomer or the Pt atom caps the surface of the three 
equilateral triangle Ti atoms. 

The N = 5 cluster was observed to be a triangular bi-pyramidal 
configuration which is a 1 – 3 – 1 layered stacking and the Pt atom 
staying at 1 – 2 (Pt) – 1 layer. This is a face capped isomer with Pt 
atom capped on the opposite and adjacent faces of Ti atoms. 

The octahedral isomer N = 6 is 1 – 4 – 1 layered stacking where 
Pt atom is placed at 1 – 3(Pt) – 1 layered. This configuration also 
has the Pt impurity capped on the face. For N = 7, the pentagonal 
bi-pyramidal isomer is 1 – 5 – 1 layered stacking and the Pt atom 
was favoured at Pt – 5 – 1 layer. This isomer was observed to have 
its impurity staying on the apex and the surface. The N = 8 cluster 
was a capped pentagonal bi-pyramid which was observed to have 
Pt atom placed on the capped atom of the pentagonal bipyramid or 
the Pt atom forming part of the pentagonal ring. 

For N = 9, Pt atom was found to be placed on the apex of the 
Two-faced capped pentagonal. The N = 10 was observed to have 
its atom on the apex replaced with Pt atom. Similar observations 
were found for N = 9. The N = 11 was found to be a 1 – 5 – 1 – 4 
layered stacking where Pt atom is placed on the 1 – 5 – 1 – 3(Pt) 
layered stack. Pt atom was placed on one of the tetra atoms which 
are capped on the pentagonal bi-pyramid. For N = 12 the most 
favoured substituting is observed at 1 – 4(Pt) – 1 – 4 – 1 layered 
stacking. 

The Pt atom is capped on the face of the pentagonal bi-pyramid. 

The Z12 Frank-Casper polyhedral or icosahedral isomer is a 1 – 5 
– 1 – 5 – 1 layered stacking and the Pt atom was found to be more 
stable at 1 – 4(Pt) – 1 – 5 – 1 layered stacking. The Pt impurity was 
placed on this precursor similarly with N = 12. The N = 14 is a Z13 
Frank Casper polyhedral isomer which has the Pt atom staying at 
1 – 5 – 1 – 5(Pt) – 1 layered stacking. 

The Pt atom was capped on the pentagon ring. The Z14 Frank 
Casper polyhedral was found to have the most favoured site at 1 – 5 
– 1 – 6 – 1 (Pt).  Here, the Pt atom was observed to be placed on one 
of the two atoms which are capped on the apex of the pentagonal 
geometry.  For N = 16, the Z15 Frank Casper polyhedral is a 1 – 6 
– 1 – 7 – 1 layered stacking and the Pt impurity placed at 1 – 6 – 1 
– 7 – Pt. The Pt atom was observed to be placed on the atom which 
was capped on the Z14 Frank Casper polyhedral.
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and atom. The binding energies of the TiN-1Pt 
and TiN clusters followed similar trends. 
Their binding energies decreases as the 
cluster size N increases. With sizes N = 2 – 
16, TiN clusters showed larger binding 

energies as compared to TiN-1Pt clusters. This 
observation revealed more stable relative 
energies to the TiN-1Pt clusters. The 
enhancement of the binding energies was 
observed to reduce from N = 7 – 16. This 
behaviour was ascribed to the increase in TiN-

1Pt coordination which weakens the 
interactions between Ti and Pt atoms [Du et 
al. 2010]. Furthermore, for Ti12Pt (N = 13), 
Ti7 (N = 7) and its neighbours, the binding 
energy was slightly lowered while for N = 15 
onwards the nanocluster become more stable.  

The increase in the stability of the Ti12Pt and 
Ti7 clusters can be understood by the nature 
of the pentagonal and icosahedral structures. 
The high stability of the regular pentagonal 
and icosahedral structures usually occurs for 
transition-metal clusters due to their {111} 
surface facets. This behaviour was also 
reported by Rodríguez-Kessler and 
Rodríguez-Domínguez (2016) and it was 
found that the icosahedral structure possesses 

for TiN, TiN-1Pt clusters, where,  and  are the lowest energies of 
cluster and atom. The binding energies of the TiN-1Pt and TiN 
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Figure 1: Putative global minimisation clusters obtained by DFT-PBESol calculation for the bimetallic TiN-1Pt (N = 2 – 16) clusters, 
where light atom represent Pt and grey atoms are Ti
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observed to reduce from N = 7 – 16. This behaviour was ascribed to 
the increase in TiN-1Pt coordination which weakens the interactions 
between Ti and Pt atoms [Du et al. 2010]. Furthermore, for Ti12Pt 
(N = 13), Ti7 (N = 7) and its neighbours, the binding energy was 
slightly lowered while for N = 15 onwards the nanocluster become 
more stable. 

The increase in the stability of the Ti12Pt and Ti7 clusters can 
be understood by the nature of the pentagonal and icosahedral 
structures. The high stability of the regular pentagonal and 
icosahedral structures usually occurs for transition-metal clusters 
due to their {111} surface facets. This behaviour was also reported 
by Rodríguez-Kessler and Rodríguez-Domínguez (2016) and 
it was found that the icosahedral structure possesses a special 
reactivity when compared to the less coordinated neighbouring 
structures. The second-order energy D2E (relative stability) and 
dissociation energy were used to determine the stability of TiN-1Pt 
and TiN clusters (figure 3). Higher stability was associated with 
the lower negative value in energy that was ascribed to favourable 
nucleation. In figure 3(a), the relative stability is estimated with the 
following equations:
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for pure TiN clusters, and  
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for the Pt-doped TiN clusters, where ET[Ti], 
ET[Pt], and ET[TiNPt] are the total energies of 
the bare Ti atom, the Pt atom, and the TiNPt 
doped cluster, while N denotes the number of 
Ti atoms in the cluster, respectively. As 
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Figure 2: The binding energies per atom (Eb/atom) of the TiN and TiN−1Pt clusters with N = 2–16.
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Figure 2: The binding energies per atom (Eb/atom) of the TiN and TiN−1Pt clusters with N = 2–16.
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for pure Ti. 

The highest energy dissociation peaks 
correspond to the loss of Ti atoms in both 
channels. For pure TiN clusters, N = 5 and N 
= 7 still showed lower energy channels, 
however, the N = 13 cluster showed the 
lowest energy channels, contrary to the 
relative energies. In the case of Ti-doped 
clusters, Ti12Pt still represented the lowest 
dissociation energies suggesting high 
stabilities. However, the Ti14Pt cluster was 
found to have replaced the Ti6Pt cluster as the 
meta-stable cluster. 
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Figure 3: (a) The relative stability (D2E) and (b) dissociation energy (Ed) of TiN and TiN−1Pt clusters 
with N = 2 - 16.

Conclusion 
The density functional theory approach was 
used to investigate the changes in the 
stabilities of TiN  (N = 2 – 16) clusters as one 
Ti atom was substituted by Pt impurities. For 
Z12 Frank-Casper polyhedral or icosahedral 
geometry, the Pt atom prefered to be located 
at 1 – 4(Pt) – 1 – 5 – 1 layered stacking. The 

doping of Pt atom enhanced the stabilities of 
titanium clusters in terms of binding energies, 
relative energies and dissociation energies. 
The Ti5, Ti7, Ti6Pt and Ti12Pt presented 
higher stabilities as compared to their 
neighbouring clusters.
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Figure 3: (a) The relative stability (D2E) and (b) dissociation energy (Ed) of TiN and TiN−1Pt clusters 
with N = 2 - 16.

Conclusion 
The density functional theory approach was 
used to investigate the changes in the 
stabilities of TiN  (N = 2 – 16) clusters as one 
Ti atom was substituted by Pt impurities. For 
Z12 Frank-Casper polyhedral or icosahedral 
geometry, the Pt atom prefered to be located 
at 1 – 4(Pt) – 1 – 5 – 1 layered stacking. The 

doping of Pt atom enhanced the stabilities of 
titanium clusters in terms of binding energies, 
relative energies and dissociation energies. 
The Ti5, Ti7, Ti6Pt and Ti12Pt presented 
higher stabilities as compared to their 
neighbouring clusters.
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for pure Ti. 

The highest energy dissociation peaks 
correspond to the loss of Ti atoms in both 
channels. For pure TiN clusters, N = 5 and N 
= 7 still showed lower energy channels, 
however, the N = 13 cluster showed the 
lowest energy channels, contrary to the 
relative energies. In the case of Ti-doped 
clusters, Ti12Pt still represented the lowest 
dissociation energies suggesting high 
stabilities. However, the Ti14Pt cluster was 
found to have replaced the Ti6Pt cluster as the 
meta-stable cluster. 
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Figure 3: (a) The relative stability (D2E) and (b) dissociation energy (Ed) of TiN and TiN−1Pt clusters 
with N = 2 - 16.

Conclusion 
The density functional theory approach was 
used to investigate the changes in the 
stabilities of TiN  (N = 2 – 16) clusters as one 
Ti atom was substituted by Pt impurities. For 
Z12 Frank-Casper polyhedral or icosahedral 
geometry, the Pt atom prefered to be located 
at 1 – 4(Pt) – 1 – 5 – 1 layered stacking. The 

doping of Pt atom enhanced the stabilities of 
titanium clusters in terms of binding energies, 
relative energies and dissociation energies. 
The Ti5, Ti7, Ti6Pt and Ti12Pt presented 
higher stabilities as compared to their 
neighbouring clusters.
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Figure 2: The binding energies per atom (Eb/atom) of the TiN and 
TiN−1Pt clusters with N = 2–16
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Figure 3: (a) The relative stability (D2E) and (b) dissociation energy (Ed) of TiN and TiN−1Pt clusters 
with N = 2 - 16.

Conclusion 
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Z12 Frank-Casper polyhedral or icosahedral 
geometry, the Pt atom prefered to be located 
at 1 – 4(Pt) – 1 – 5 – 1 layered stacking. The 

doping of Pt atom enhanced the stabilities of 
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Conclusion

The density functional theory approach was used to investigate 
the changes in the stabilities of TiN  (N = 2 – 16) clusters as one 
Ti atom was substituted by Pt impurities. For Z12 Frank-Casper 
polyhedral or icosahedral geometry, the Pt atom prefered to be 
located at 1 – 4(Pt) – 1 – 5 – 1 layered stacking. The doping of 
Pt atom enhanced the stabilities of titanium clusters in terms of 
binding energies, relative energies and dissociation energies. The 
Ti5, Ti7, Ti6Pt and Ti12Pt presented higher stabilities as compared to 
their neighbouring clusters.
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